435 lines
16 KiB
Python
435 lines
16 KiB
Python
from typing import Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from diffusers import ConfigMixin, ModelMixin
|
|
from diffusers.configuration_utils import register_to_config
|
|
from diffusers.models.attention import Attention, FeedForward
|
|
from diffusers.models.embeddings import (
|
|
SinusoidalPositionalEmbedding,
|
|
TimestepEmbedding,
|
|
Timesteps,
|
|
)
|
|
from torch import nn
|
|
|
|
|
|
class TimestepEncoder(nn.Module):
|
|
def __init__(self, embedding_dim, compute_dtype=torch.float32):
|
|
super().__init__()
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
|
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
|
|
|
def forward(self, timesteps):
|
|
dtype = next(self.parameters()).dtype
|
|
timesteps_proj = self.time_proj(timesteps).to(dtype)
|
|
timesteps_emb = self.timestep_embedder(timesteps_proj) # (N, D)
|
|
return timesteps_emb
|
|
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
norm_elementwise_affine: bool = False,
|
|
norm_eps: float = 1e-5,
|
|
chunk_dim: int = 0,
|
|
):
|
|
super().__init__()
|
|
self.chunk_dim = chunk_dim
|
|
output_dim = embedding_dim * 2
|
|
self.silu = nn.SiLU()
|
|
self.linear = nn.Linear(embedding_dim, output_dim)
|
|
self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
temb: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
temb = self.linear(self.silu(temb))
|
|
scale, shift = temb.chunk(2, dim=1)
|
|
x = self.norm(x) * (1 + scale[:, None]) + shift[:, None]
|
|
return x
|
|
|
|
|
|
class BasicTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_attention_heads: int,
|
|
attention_head_dim: int,
|
|
dropout=0.0,
|
|
cross_attention_dim: Optional[int] = None,
|
|
activation_fn: str = "geglu",
|
|
attention_bias: bool = False,
|
|
upcast_attention: bool = False,
|
|
norm_elementwise_affine: bool = True,
|
|
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
|
norm_eps: float = 1e-5,
|
|
final_dropout: bool = False,
|
|
attention_type: str = "default",
|
|
positional_embeddings: Optional[str] = None,
|
|
num_positional_embeddings: Optional[int] = None,
|
|
ff_inner_dim: Optional[int] = None,
|
|
ff_bias: bool = True,
|
|
attention_out_bias: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_head_dim = attention_head_dim
|
|
self.dropout = dropout
|
|
self.cross_attention_dim = cross_attention_dim
|
|
self.activation_fn = activation_fn
|
|
self.attention_bias = attention_bias
|
|
self.norm_elementwise_affine = norm_elementwise_affine
|
|
self.positional_embeddings = positional_embeddings
|
|
self.num_positional_embeddings = num_positional_embeddings
|
|
self.norm_type = norm_type
|
|
|
|
if positional_embeddings and (num_positional_embeddings is None):
|
|
raise ValueError(
|
|
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
|
)
|
|
|
|
if positional_embeddings == "sinusoidal":
|
|
self.pos_embed = SinusoidalPositionalEmbedding(
|
|
dim, max_seq_length=num_positional_embeddings
|
|
)
|
|
else:
|
|
self.pos_embed = None
|
|
|
|
# Define 3 blocks. Each block has its own normalization layer.
|
|
# 1. Self-Attn
|
|
if norm_type == "ada_norm":
|
|
self.norm1 = AdaLayerNorm(dim)
|
|
else:
|
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
|
|
|
self.attn1 = Attention(
|
|
query_dim=dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
cross_attention_dim=cross_attention_dim,
|
|
upcast_attention=upcast_attention,
|
|
out_bias=attention_out_bias,
|
|
)
|
|
|
|
# 3. Feed-forward
|
|
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
|
self.ff = FeedForward(
|
|
dim,
|
|
dropout=dropout,
|
|
activation_fn=activation_fn,
|
|
final_dropout=final_dropout,
|
|
inner_dim=ff_inner_dim,
|
|
bias=ff_bias,
|
|
)
|
|
if final_dropout:
|
|
self.final_dropout = nn.Dropout(dropout)
|
|
else:
|
|
self.final_dropout = None
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
temb: Optional[torch.LongTensor] = None,
|
|
) -> torch.Tensor:
|
|
|
|
# 0. Self-Attention
|
|
if self.norm_type == "ada_norm":
|
|
norm_hidden_states = self.norm1(hidden_states, temb)
|
|
else:
|
|
norm_hidden_states = self.norm1(hidden_states)
|
|
|
|
if self.pos_embed is not None:
|
|
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
|
|
|
attn_output = self.attn1(
|
|
norm_hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
attention_mask=attention_mask,
|
|
# encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
if self.final_dropout:
|
|
attn_output = self.final_dropout(attn_output)
|
|
|
|
hidden_states = attn_output + hidden_states
|
|
if hidden_states.ndim == 4:
|
|
hidden_states = hidden_states.squeeze(1)
|
|
|
|
# 4. Feed-forward
|
|
norm_hidden_states = self.norm3(hidden_states)
|
|
ff_output = self.ff(norm_hidden_states)
|
|
|
|
hidden_states = ff_output + hidden_states
|
|
if hidden_states.ndim == 4:
|
|
hidden_states = hidden_states.squeeze(1)
|
|
return hidden_states
|
|
|
|
class DiTConfig(BaseModel):
|
|
num_attention_heads: int = Field(default=8)
|
|
attention_head_dim: int = Field(default=64)
|
|
output_dim: int = Field(default=26)
|
|
num_layers: int = Field(default=12)
|
|
dropout: float = Field(default=0.1)
|
|
attention_bias: bool = Field(default=True)
|
|
activation_fn: str = Field(default="gelu-approximate")
|
|
num_embeds_ada_norm: Optional[int] = Field(default=1000)
|
|
upcast_attention: bool = Field(default=False)
|
|
norm_type: str = Field(default="ada_norm")
|
|
norm_elementwise_affine: bool = Field(default=False)
|
|
norm_eps: float = Field(default=1e-5)
|
|
max_num_positional_embeddings: int = Field(default=512)
|
|
compute_dtype: str = Field(default="float32")
|
|
final_dropout: bool = Field(default=True)
|
|
positional_embeddings: Optional[str] = Field(default="sinusoidal")
|
|
interleave_self_attention: bool = Field(default=False)
|
|
cross_attention_dim: Optional[int] = Field(default=None, description="Dimension of the cross-attention embeddings. If None, no cross-attention is used.")
|
|
|
|
|
|
class DiT(ModelMixin):
|
|
_supports_gradient_checkpointing = True
|
|
|
|
def __init__(self,config: DiTConfig):
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.compute_dtype = getattr(torch, self.config.compute_dtype)
|
|
|
|
self.attention_head_dim = self.config.attention_head_dim
|
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
|
self.gradient_checkpointing = False
|
|
|
|
# Timestep encoder
|
|
self.timestep_encoder = TimestepEncoder(
|
|
embedding_dim=self.inner_dim, compute_dtype=self.compute_dtype
|
|
)
|
|
|
|
all_blocks = []
|
|
for idx in range(self.config.num_layers):
|
|
|
|
use_self_attn = idx % 2 == 1 and self.config.interleave_self_attention
|
|
curr_cross_attention_dim = self.config.cross_attention_dim if not use_self_attn else None
|
|
|
|
all_blocks += [
|
|
BasicTransformerBlock(
|
|
self.inner_dim,
|
|
self.config.num_attention_heads,
|
|
self.config.attention_head_dim,
|
|
dropout=self.config.dropout,
|
|
activation_fn=self.config.activation_fn,
|
|
attention_bias=self.config.attention_bias,
|
|
upcast_attention=self.config.upcast_attention,
|
|
norm_type=self.config.norm_type,
|
|
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
|
norm_eps=self.config.norm_eps,
|
|
positional_embeddings=self.config.positional_embeddings,
|
|
num_positional_embeddings=self.config.max_num_positional_embeddings,
|
|
final_dropout=self.config.final_dropout,
|
|
cross_attention_dim=curr_cross_attention_dim,
|
|
)
|
|
]
|
|
self.transformer_blocks = nn.ModuleList(all_blocks)
|
|
|
|
# Output blocks
|
|
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
|
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
|
self.proj_out_2 = nn.Linear(self.inner_dim, self.config.output_dim)
|
|
print(
|
|
"Total number of DiT parameters: ",
|
|
sum(p.numel() for p in self.parameters() if p.requires_grad),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor, # Shape: (B, T, D)
|
|
encoder_hidden_states: torch.Tensor, # Shape: (B, S, D)
|
|
timestep: Optional[torch.LongTensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
return_all_hidden_states: bool = False,
|
|
):
|
|
# Encode timesteps
|
|
temb = self.timestep_encoder(timestep)
|
|
|
|
# Process through transformer blocks - single pass through the blocks
|
|
hidden_states = hidden_states.contiguous()
|
|
encoder_hidden_states = encoder_hidden_states.contiguous()
|
|
|
|
all_hidden_states = [hidden_states]
|
|
|
|
# Process through transformer blocks
|
|
for idx, block in enumerate(self.transformer_blocks):
|
|
if idx % 2 == 1 and self.config.interleave_self_attention:
|
|
hidden_states = block(
|
|
hidden_states,
|
|
attention_mask=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
temb=temb,
|
|
)
|
|
else:
|
|
hidden_states = block(
|
|
hidden_states,
|
|
attention_mask=None,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=None,
|
|
temb=temb,
|
|
)
|
|
all_hidden_states.append(hidden_states)
|
|
|
|
# Output processing
|
|
conditioning = temb
|
|
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
|
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
|
if return_all_hidden_states:
|
|
return self.proj_out_2(hidden_states), all_hidden_states
|
|
else:
|
|
return self.proj_out_2(hidden_states)
|
|
|
|
|
|
class SelfAttentionTransformerConfig(BaseModel):
|
|
num_attention_heads: int = Field(default=8)
|
|
attention_head_dim: int = Field(default=64)
|
|
output_dim: int = Field(default=26)
|
|
num_layers: int = Field(default=12)
|
|
dropout: float = Field(default=0.1)
|
|
attention_bias: bool = Field(default=True)
|
|
activation_fn: str = Field(default="gelu-approximate")
|
|
num_embeds_ada_norm: Optional[int] = Field(default=1000)
|
|
upcast_attention: bool = Field(default=False)
|
|
max_num_positional_embeddings: int = Field(default=512)
|
|
compute_dtype: str = Field(default="float32")
|
|
final_dropout: bool = Field(default=True)
|
|
positional_embeddings: Optional[str] = Field(default="sinusoidal")
|
|
interleave_self_attention: bool = Field(default=False)
|
|
|
|
class SelfAttentionTransformer(ModelMixin):
|
|
_supports_gradient_checkpointing = True
|
|
|
|
def __init__(self, config: SelfAttentionTransformerConfig):
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.attention_head_dim = self.config.attention_head_dim
|
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
|
self.gradient_checkpointing = False
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
self.inner_dim,
|
|
self.config.num_attention_heads,
|
|
self.config.attention_head_dim,
|
|
dropout=self.config.dropout,
|
|
activation_fn=self.config.activation_fn,
|
|
attention_bias=self.config.attention_bias,
|
|
upcast_attention=self.config.upcast_attention,
|
|
positional_embeddings=self.config.positional_embeddings,
|
|
num_positional_embeddings=self.config.max_num_positional_embeddings,
|
|
final_dropout=self.config.final_dropout,
|
|
)
|
|
for _ in range(self.config.num_layers)
|
|
]
|
|
)
|
|
print(
|
|
"Total number of SelfAttentionTransformer parameters: ",
|
|
sum(p.numel() for p in self.parameters() if p.requires_grad),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor, # Shape: (B, T, D)
|
|
return_all_hidden_states: bool = False,
|
|
):
|
|
|
|
# Process through transformer blocks - single pass through the blocks
|
|
hidden_states = hidden_states.contiguous()
|
|
all_hidden_states = [hidden_states]
|
|
|
|
# Process through transformer blocks
|
|
for idx, block in enumerate(self.transformer_blocks):
|
|
hidden_states = block(hidden_states)
|
|
all_hidden_states.append(hidden_states)
|
|
|
|
if return_all_hidden_states:
|
|
return hidden_states, all_hidden_states
|
|
else:
|
|
return hidden_states
|
|
|
|
|
|
class CrossAttentionTransformer(ModelMixin, ConfigMixin):
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_attention_heads: int = 8,
|
|
attention_head_dim: int = 64,
|
|
output_dim: int = 26,
|
|
num_layers: int = 12,
|
|
dropout: float = 0.1,
|
|
attention_bias: bool = True,
|
|
activation_fn: str = "gelu-approximate",
|
|
num_embeds_ada_norm: Optional[int] = 1000,
|
|
upcast_attention: bool = False,
|
|
max_num_positional_embeddings: int = 512,
|
|
compute_dtype=torch.float32,
|
|
final_dropout: bool = True,
|
|
positional_embeddings: Optional[str] = "sinusoidal",
|
|
interleave_self_attention=False,
|
|
):
|
|
super().__init__()
|
|
|
|
self.attention_head_dim = attention_head_dim
|
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
|
self.gradient_checkpointing = False
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
self.inner_dim,
|
|
self.config.num_attention_heads,
|
|
self.config.attention_head_dim,
|
|
dropout=self.config.dropout,
|
|
activation_fn=self.config.activation_fn,
|
|
attention_bias=self.config.attention_bias,
|
|
upcast_attention=self.config.upcast_attention,
|
|
positional_embeddings=positional_embeddings,
|
|
num_positional_embeddings=self.config.max_num_positional_embeddings,
|
|
final_dropout=final_dropout,
|
|
)
|
|
for _ in range(self.config.num_layers)
|
|
]
|
|
)
|
|
print(
|
|
"Total number of CrossAttentionTransformer parameters: ",
|
|
sum(p.numel() for p in self.parameters() if p.requires_grad),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor, # Shape: (B, T, D)
|
|
encoder_hidden_states: torch.Tensor, # Shape: (B, S, D)
|
|
):
|
|
|
|
# Process through transformer blocks - single pass through the blocks
|
|
hidden_states = hidden_states.contiguous()
|
|
encoder_hidden_states = encoder_hidden_states.contiguous()
|
|
# Process through transformer blocks
|
|
for idx, block in enumerate(self.transformer_blocks):
|
|
hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
)
|
|
|
|
return hidden_states
|